Abstract: For the ephemeral river channels in semi-arid regions of India, after every Monsoon
season, prompt preparation of river sand distribution maps is often necessary for river sand auditing before resuming the sand mining operations. The process can be readily assisted by
classifying the satellite-based remotely sensed imagery, although often confronted by limited
accuracy levels arising due to poor distinguishing capability among the spectrally similar class categories.
This study aims to improve the classification accuracy targeting river sand deposits by systematically examining the effects of including spectral indices and textural features in the feature-space while classification. Two most common classification algorithms, viz. Maximum
Likelihood Classification (MLC) and Support Vector Machine (SVM) classification were used.
The results show that SVM performed even better when Normalized Difference Vegetation
Index (NDVI) and correlation texture feature computed at 3×3 window size were included in the
feature-space comprising original spectral bands.
Keywords: River Sand, MLC, SVM, Spectral Indices, Textural Features
Introduction
River sand is a valuable natural resource with its major utilization in the construction industry.
With the increasing pressure of rapid infrastructural development, there has been an equivalent rise in the market demand of river sand. Consequently, the limited sources of river sand are placed with an undue strain in terms of disturbed riverine environment. To ensure the sustainable use of river sand, regular audits of their reserves are often recommended by the policymakers. The preparation of river sand distribution maps is an important step in river sand audits. Regular updating of such maps requires frequent cumbersome field surveying spells
that usually encompasses the involvement of multiple stakeholders. In this scenario, often, old data
are relied upon and are carried forward year-by-year without updating due to lack of availability
of resources, and more importantly, due to the lack of knowledge of appropriate technique (Mitra
and Singh, 2015). Remote sensing data has demonstrated potential in the applications
involving the generation of planimetric maps depicting river sand deposits. For example,
Ramkumar et al. (2015) made an attempt to identify the active-channel sand bars within Kaveri
River through visual interpretation from IRS 1B LISS-III imagery of the year 2008, compared it
with Survey of India toposheet of the year 1971, and found the areal extent of these sand bars
to be increasing at a rate of 1.05 km2 per year (Ramkumar et al., 2015).
For eliminating the problem of biasedness in image interpretation, and towards introducing automation, numerous classification algorithms have been developed by the research community such as pixel-based, object-based and knowledge-based classification algorithms that use spectral, spatial or temporal information, or any combination of these, via unsupervised clustering methods or supervised learning methods (Lu and Weng, 2007). For example, Leckie et al. (2005) performed pixel-based image classification on 0.8 m spatial resolution aerial imagery dataset with eight spectral bands for mapping of stream features such as deep, moderate and shallow glasses of water along with sand, gravel, cobble, and rocky areas. Feature-space optimization is a critical step towards increasing the classification accuracy. Features such as spectral signatures, vegetation indices, textural and terrain features are some of the possible variables in any classification process (Lu and Weng, 2007). The key is to improve the class-separability by incorporating the distinguishing characteristics among the land cover classes present in the study area. Various spectral indices, when included in the
9
feature-space, have contributed towards improving the overall accuracy of classification (Zha et al., 2003). Normalized Difference Vegetation Index (NDVI), developed by Rouse et al. (1973) is one of the commonly used indices. Also, the Normalized Difference Water Index (NDWI) is specifically used to enhance the surface water features and works as a complementary index along with NDVI (Zha et al., 2003). By using NDWI, estimation of turbidity in water may be performed (McFeeters, 1996). To enhance the separation of completely bare, sparse and dense vegetation cover, Bare Soil Index (BSI) is used (Azizi et al., 2008).
Further, incorporating image texture properties for improved classification accuracy has been suggested by many studies like Haralick et al. (1973) and Huang et al. (2014). Image texture is a measure that depicts the spatial arrangement of the pixel grey levels (Carbonneau et al., 2005). Although there are several measures available to harness textural properties from
image data (Chaurasia and Garg, 2013), Grey Level Co-occurrence Matrix (GLCM) is one
of the widely utilized methods in case of satellite imagery (Haralick et al., 1973; Huang et al.,
2014; Li et al., 2011). However, it is important to consider the choice of texture feature and window size to adopt for the study (Pathak and Dikshit, 2010). The present study attempts to make an assessment on the hypothesis that for the spatial mapping of river sand, spectral indices and textural features improve the accuracy of supervised classification on the multispectral satellite imagery. Various combinations of features were prepared and each of the combinations was examined using two most prevailing supervised classification methods,
namely, Maximum Likelihood Classification (MLC) and Support Vector Machine (SVM). MLC is a parametric classification method wherein it is assumed that the land cover features are normally distributed and hence, to derive the statistics, a sufficiently large number of training samples are required for MLC (Richards and Jia, 1999). Whereas SVM, which has sharply gained popularity in remote sensing (Mountrakis et al., 2011), is a non-parametric machine learning algorithm where parameters such as mean vector and covariance matrix are not used,
and hence, any kind of assumption about the data is not required (Lu and Weng, 2007). The reader is referred to Lu and Weng (2007) for a detailed description of various remote sensing image classification methods.
By:
Virat Arora, S. S. Rao, E. Amminedu and P. Jagadeeswara Rao
National Remote Sensing Centre, Hyderabad, India
Dept. of Geo-Engineering, Andhra University College of Engineering, Visakhapatnam, India
Email: aroravirat@gmail.com

Web có tốc độ tải trang nhanh và ổn định.
The trading tools are stable performance and robust security.
The best choice I made for checking analytics. Smooth and low fees. Great for cross-chain swaps with minimal slippage.
Web mang lại trải nghiệm mượt mà, không bị lag.
Web giúp người dùng thao tác nhanh chóng và dễ dàng.
I always used to read post in news papers but now as I am a user of net therefore from now I am using
net for posts, thanks to web.
Các chức năng trên web vận hành mượt mà, ổn định.
Mình đánh giá cao sự chuyên nghiệp của web.
Các tính năng trên web hoạt động ổn định và hiệu quả.
Mình thích cách web tối ưu hóa trải nghiệm người dùng.
Trải nghiệm chơi game trên web mượt mà, không bị lỗi.
Mình thấy web này đáng tin cậy và uy tín.
Web luôn cập nhật các trò chơi mới và hấp dẫn.
Mình thấy web này đáng tin cậy và uy tín.
Web mang đến trải nghiệm thoải mái và dễ chịu.
Web cung cấp thông tin chi tiết về các trò chơi.
Web giúp người dùng thao tác nhanh chóng và dễ dàng.
I personally find that the cross-chain transfers process is simple and the seamless withdrawals makes it even better.
Web mang lại trải nghiệm chơi game tiện lợi và thú vị.
Web giúp thao tác tìm kiếm nhanh chóng và tiện lợi.
Web cập nhật thông tin mới liên tục, rất hữu ích.
курьер доставки цветов
живые цветы с доставкой на дом
Mình đánh giá cao trải nghiệm người dùng trên web.
Trải nghiệm chơi game trên web rất mượt mà và ổn định.
Các trò chơi trên web đa dạng và phong phú.
Web hỗ trợ người dùng nhanh chóng và hiệu quả.
I’ve been active for a month, mostly for using the bridge, and it’s always stable performance.
The exploring governance process is simple and the easy onboarding makes it even better.
The interface is great support, and I enjoy fiat on-ramp here.
Chơi đá gà online an toàn, minh bạch tại ga888
Quinn here — I’ve tried learning crypto basics and the stable performance impressed me.
Cập nhật lịch đá gà mới nhất hôm nay trên ga888
Wow! This is a cool platform. They really do have the useful analytics. I moved funds across chains without a problem.
Very efficient. I’ll buy again.
Loved the information in this entry. It’s highly well-researched and full of useful insights. Great job!
What is the best online casino in Australia for real money?
Well packaged. Practical.
Wow! This is a cool platform. They really do have the easy onboarding. I moved funds across chains without a problem.
где купить дешевые цветы в москве
[b]Бесплатная замена некачественного букета цветов[/b]
доставка дешевых цветов
[b]Персональный менеджер для крупных заказчиков цветов[/b]
官方授权的iyftv海外华人首选,第一时间提供最新华语剧集、美剧、日剧等高清在线观看。
奥美迦奥特曼高清完整版结合大数据AI分析,海外华人可免费观看最新热播剧集。
Доставка цветов круглосуточная
[b]Натуральная красота природы в наших букетах[/b]
Trải nghiệm chơi game trên web rất mượt mà.
真实的人类第二季高清完整官方版,海外华人可免费观看最新热播剧集。
Mình thấy web này đáng tin cậy và uy tín.
Web giúp thao tác tìm kiếm thông tin nhanh chóng.
Доставка рф цветы
[b]Средние композиции универсальные купите[/b]
Fees are fast transactions, and the execution is always smooth. The updates are frequent and clear.
I personally find that fees are accurate charts, and the execution is always smooth.
The interface is stable performance, and I enjoy checking analytics here. I moved funds across chains without a problem.
The learning crypto basics tools are quick deposits and responsive team.
I personally find that i’ve been using it for half a year for fiat on-ramp, and the useful analytics stands out.
奥美迦奥特曼高清完整版采用机器学习个性化推荐,海外华人可免费观看最新热播剧集。
Где купить недорого цветы
[b]Проверьте свежесть букета при получении[/b]
Цветы москва доставка недорого
[b]Акционные букеты со скидками каждый день[/b]
捕风捉影在线免费在线观看,海外华人专属官方认证平台,高清无广告体验。
Các tính năng trên web hoạt động mượt mà, ổn định.
Web giúp tiết kiệm thời gian và thao tác dễ dàng.
The interface is intuitive UI, and I enjoy checking analytics here. My withdrawals were always smooth.
塔尔萨之王第三季高清完整版采用机器学习个性化推荐,海外华人可免费观看最新热播剧集。
Các trò chơi trên web được thiết kế sinh động, hấp dẫn.
Best Baccarat Online Real Money Play
Giao diện web hiện đại và dễ nhìn.
I personally find that customer support was helpful, which gave me confidence to continue. Definitely recommend to anyone in crypto.
Дешевые цветочные магазины в москве – Забота о каждом покупателе цветов индивидуально
Fast onboarding, accurate charts, and a team that actually cares. My withdrawals were always smooth.
Магазин про цветы – Круглогодичный ассортимент классических букетов цветов
奥美迦奥特曼高清完整版,海外华人可免费观看最新热播剧集。
Web hỗ trợ người dùng nhanh chóng và hiệu quả.
Blake here — I’ve tried using the API and the stable performance impressed me.
Web cung cấp trải nghiệm giải trí an toàn và tiện lợi.
I value the useful analytics and low fees. This site is reliable.
Đăng nhập nhanh chóng, không gặp vấn đề gì.
I’ve been using it for since launch for using the API, and the trustworthy service stands out.
Послать букет цветов Букеты для выражения благодарности коллегам
成何体统2026 丞磊王楚然 双穿书甜宠 高清现代穿越恋爱 无广告高清追剧
Послать букет цветов Партнерские отношения с постоянными клиентами салона
Web giúp thao tác chơi game nhanh chóng và tiện lợi.
Web mang lại trải nghiệm chơi game tiện lợi và thú vị.